Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
OMICS ; 25(12): 770-781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34807729

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a systemic disease affecting not only the lungs but also multiple organ systems. Clinical studies implicate that SARS-CoV-2 infection causes imbalance of cellular homeostasis and immune response that trigger cytokine storm, oxidative stress, thrombosis, and insulin resistance. Mathematical modeling can offer in-depth understanding of the SARS-CoV-2 infection and illuminate how subcellular mechanisms and feedback loops underpin disease progression and multiorgan failure. We report here a mathematical model of SARS-CoV-2 infection pathway network with cytokine storm, oxidative stress, thrombosis, insulin resistance, and nitric oxide (NO) pathways. The biochemical systems theory model shows autocrine loops with positive feedback enabling excessive immune response, cytokines, transcription factors, and interferons, which can imbalance homeostasis of the system. The simulations suggest that changes in immune response led to uncontrolled release of cytokines and chemokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNFα), and affect insulin, coagulation, and NO signaling pathways. Increased production of NETs (neutrophil extracellular traps), thrombin, PAI-1 (plasminogen activator inhibitor-1), and other procoagulant factors led to thrombosis. By analyzing complex biochemical reactions, this model forecasts the key intermediates, potential biomarkers, and risk factors at different stages of COVID-19. These insights can be useful for drug discovery and development, as well as precision treatment of multiorgan implications of COVID-19 as seen in systems medicine.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Resistência à Insulina/imunologia , Óxido Nítrico/imunologia , Estresse Oxidativo/imunologia , SARS-CoV-2/imunologia , Trombose/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/virologia , Citocinas/imunologia , Humanos , Modelos Teóricos , Transdução de Sinais/imunologia , Trombose/virologia
2.
OMICS ; 21(8): 454-464, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28816645

RESUMO

Parkinson's disease (PD), a neurodegenerative disorder, affects millions of people and has gained attention because of its clinical roles affecting behaviors related to motor and nonmotor symptoms. Although studies on PD from various aspects are becoming popular, few rely on predictive systems modeling approaches. Using Biochemical Systems Theory (BST), this article attempts to model and characterize dopaminergic cell death and understand pathophysiology of progression of PD. PD pathways were modeled using stochastic differential equations incorporating law of mass action, and initial concentrations for the modeled proteins were obtained from literature. Simulations suggest that dopamine levels were reduced significantly due to an increase in dopaminergic quinones and 3,4-dihydroxyphenylacetaldehyde (DOPAL) relating to imbalances compared to control during PD progression. Associating to clinically observed PD-related cell death, simulations show abnormal parkin and reactive oxygen species levels with an increase in neurofibrillary tangles. While relating molecular mechanistic roles, the BST modeling helps predicting dopaminergic cell death processes involved in the progression of PD and provides a predictive understanding of neuronal dysfunction for translational neuroscience.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Estatísticos , Doença de Parkinson/metabolismo , Teoria de Sistemas , Ubiquitina-Proteína Ligases/genética , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular , Simulação por Computador , Progressão da Doença , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Processos Estocásticos , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...